Methods of handling and working with missing/censored data (part-2)

Description As discussed in my last blog here,┬ámissing data in big data analysis cannot always be ignored and requires a good understanding of the data and user decisions on how to handle this scenario. In biology, this generally occurs when the data is subjected to limits of detection or quantification (censoring or truncation mechanism). These... Continue Reading →

Advertisements

Methods of handling and working with missing data (part 1)

Description In biology, the presence of missing values is a common occurrence for example in proteomics and metabolomics study. This represents a real challenge if one intends to perform an objective statistical analysis avoiding misleading conclusions. The leading causes of incompletely observed data are truncation and censoring which are often wrongly used interchangeably. You can... Continue Reading →

Powered by WordPress.com.

Up ↑